
Introduction

Relocating acoustic emission in rocks with unknown 
velocity structure with machine learning

Inversion of hypocenters is the first and most fundamental step in the study of
seismic activities. In this study, we prove that machine learning (ML) methods
including artificial neural networks (ANNs) and support vector machines (SVMs)
can relocate hypocenters of acoustic emissions (AEs) without a priori knowledge
of the velocity structure [1].
Conventional method: tomography scan with additional sensor arrangement,
then iterative source location inversion.
Our method: create the training data with no additional sensor arrangement,
train the ML model, and deploy the model.
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Training data: We create 56 AEs by breaking 0.7 mm diameter pencil leads at
known locations on the fault surface [4], before the rock assembly is put together
for testing. These events are spread over the entire fault surface to ensure a good
spatial coverage. We pick the P-wave arrival time with Akaike information
criterion (AIC) [5]. The ML models using the relative P-wave arrival time (trel) as
the input and AE source locations (x, z) as the output.

Method 1 ANN: The ANN structure consisting of the following layers: (1) layer 0, 
the input layer that takes trel; (2) layer 1, the hidden layer that consists of 12 
neurons; and (3) layer 2, the output layer that has two neurons and outputs the 
AE hypocenter coordinates on the fault surface (x, z). We train an ensemble of 50 
ANNs with the same architecture for 100 epochs and average their outputs.

Relocating acoustic emission in rocks requires solving the non-linear relation
between the travel time and hypocenter locations, which is heavily dependent on
the knowledge of the medium properties, most importantly the velocity
structure. Numerous methods have been applied to relocate earthquake
hypocenters, and the most widely used approaches are the travel time inversion
methods [2,3]. These methods center around the goal of solving the non-linear
relation between the travel time and the hypocenter location, which requires
predefined velocity models of the medium. The accuracy of the relocation heavily
replies on the quality of the velocity model. Laboratory samples are often
assumed to be isotropic, and constant velocity models are usually used.
Relocating AE using conventional relocation methods becomes a difficult task
when the rock has velocity anisotropy. It requires tomographic inversion of the
sample to establish a velocity model, and then iterative inversion for relocation,
which is time consuming and computationally expensive.

The ANN model achieved
better accuracy than the
SVM model. Its RMSEs of the
ten-fold cross-validation are
1.7 mm and 3.9 mm, for x
and z, respectively.
We evaluate the ML models
on AEs created at two
known locations and each
with four repetitions. The
absolute errors on the
repeatability testing data are
1.7 mm and 2.8 mm, for x
and z, respectively.

Experiment setup. a) The loading apparatus and AE recording system, b) the
specimen assembly that consists two halves of the rock, separated by a fault.
The loading platens are actuated by flat jacks, and AE sensors are embedded
in platens on north (N) and west (W) sides of the block. We conducted a right-
lateral shear slip on the laboratory fault, with approximately 15 mm of slip
distance at a fault normal stress of 10 MPa.

Training and testing results of the ML models. a) and b) Training and sensitivity
test results of the generalized ANN model for x and z, respectively. c) and d)
Training and sensitivity test results of the SVM model for x and z, respectively.
Model outputs are plotted against ground true (i.e., targets) in the training
data, and 95% confidence intervals (CI) are shown.

AEs are associated to the breakage/rubbing of pronounced asperities. They
distribute following vertical stripes, which are ridges created by sandblasting
passes. High spatial concentration of AEs is found at the upper-left quadrant of
the surface. This area experienced most damage, and the two strongest AEs
show close correspondence to a ~10 mm chipping at the edge.

Methods

During the test, 524 AEs are recorded. The signal quality varies as the event
location and energy differ significantly. As a result, 96 events have clear onset in
all the channels and the arrivals can be confidently picked. We then use the
relative arrival time derived from the picked arrivals as input to the ML models to
relocate these events.

ζ (µs) 𝑅𝑥
2 𝑅𝑧

2

0 0.9984 0.9964

3 0.9922 0.9690

This study suggests that ML methods can provide effective and accurate
approaches for relocating seismic events in a medium with unknown velocity
structures. Our methods may expand the application of AE monitoring as they
solve the problem of relocating acoustic emission on a surface with unknown
material properties.

ζ (µs) 𝑅𝑥
2 𝑅𝑧

2

0 0.9865 0.9706

3 0.9849 0.9544

Method 2 SVM: We use the ε-insensitive support vector regression method [6]
and hyperparameters including (1) the kernel scale constant (kernel type: linear),
(2) the value of ε-insensitivity, and (3) the regulation parameter are optimized
with an exhaustive grid search.
Validation: We assess the accuracy of the ML models with the ten-fold cross-
validation method, which is suitable for the relatively small sized data set. To
examine the sensitivity to arrival picking quality, random perturbation (ζ) of 3 µs
is added to the arrival time in the training data set. The perturbed arrival times
are then evaluated using the ML models. We list here the goodness of fit (𝑅𝑥

2 and
𝑅𝑧
2), for x and z, respectively.
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